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1. Overview
In this document, we present the implementation details, model analysis, and additional results of our method. We also

provide a short video to explain our framework with illustrations and visual results.

2. Implementation Details
We implement our framework with PyTorch [8] and train the models on TITAN X GPUs. The Part-VAE, reconstruction

model, and discriminator are parametrized with neural networks. We apply Batch Normalization [3] after each convolutional
layer and use ReLU [1] as the activation function of the middle layers.

2.1. Shape Reconstruction

Given an input image, the reconstruction model produces a 3D centroid and shape encoding for each object part. The
network architecture of the image encoder and shape decoder are illustrated in Figure 1 and Figure 2, respectively. To
obtain a part shape, we pass individual encodings through the decoder of Part-VAE and apply the predicted deformations to
a template mesh. We use a spherical mesh with Nv = 642 and Nf = 1280 as template in our experiments. Finally, the
whole object shape is composited by shifting the deformed meshes to the predicted centroids and combining their vertices
and faces. Note that we do not penalize part overlap with any separation loss. Instead, the goal to cover the entire object
silhouette with the proposed part prior enables our model to discover the best part configurations automatically.

2.2. Color Reconstruction

Given the extracted image features, the decoder predicts a texture image for each object part. We then obtain the surface
colors for each part mesh by a standard UV mapping predefined on a template mesh. In our experiments, we set the size of
texture image (Ht,Wt) = (64, 64) and the texture resolution for each mesh surface Nt = 2 We show the detail mechanism
and network architecture in Figure 2.

2.3. Part-VAE

We show the network architecture of the Part-VAE in Figure 3. To train the Part-VAE, we generate primitive meshes like
cuboids, ellipsoids, cylinders, and cones using the Open3D [11] library. The meshes are centered at the origin but generated
with random parameters, e.g. width, height, and rotation.

2.4. Discriminator

To perform class conditioning, we convert the input class labels into one-hot vectors and use it to condition the last
(fully-connected) layer of the discriminator. Detail architecture is shown in Figure 4.



Figure 1: Network architecture of
the image encoder. The extracted fea-
tures are then passed through the de-
coder.

Figure 2: Network architecture of the shape and color decoder. k is the number of
parts, (Ht,Wt) is the size of texture image, Nt is the texture resolution of each mesh
surface, and ⊗ denotes the UV sampling operation.

Figure 3: Network architecture of the proposed Part-VAE. Nv

denotes the number of mesh vertices and d is the latent dimen-
sion. The deformations are applied on a template spherical mesh.

Figure 4: Network architecture of the discriminator for part
and view adversarial learning. ⊕ and ⊗ denote element-wise
sum and multiplication, respectively.



3. Additional Analysis
3.1. Detailed results on ShapeNet

We show the detailed voxel IoU results of all 13 ShapeNet [2] classes in Table 1. Note that the results in SoftRas [6] paper
are reported on a different ShapeNet dataset using 24-view training, and the results here are given by our implementation.

Table 1: Ablative evaluations on the ShapeNet dataset [2]. The base model reconstructs an object shape with 3 meshes, each is fully-
deformable as in SoftRas [6] (PP: part prior, VA: view adversarial learning, PA: part adversarial learning, CR: color reconstruction).

Method Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel All

SoftRas [6] 52.2 32.4 54.2 65.7 40.4 32.8 44.4 57.9 48.8 48.5 39.3 40.7 51.5 46.9
VPL [4] 53.1 38.5 59.1 70.1 45.4 42.3 44.1 57.0 52.1 50.8 44.4 60.1 49.8 51.3

LPD (ours) 57.3 37.3 60.9 75.2 45.5 40.8 49.6 63.3 54.5 50.1 44.3 52.7 56.2 52.9

3.2. Ablation studies on Part-VAE

We perform ablation studies on the training strategies of Part-VAE to justify our model design. First, we use VAE instead
of a vanilla auto-encoder for latent part encoding to create a continuous latent space. It not only improves the reconstruction
accuracy (vanilla auto-encoder: 51.7, VAE: 52.9 on ShapeNet), but allows us to easily generate realistic shapes by interpola-
tion or random sampling in the latent space. In Table 2, we show the results of different Part-VAE training methods. We also
show the ablative evaluations on latent dimension in Table 3.

Table 2: Ablations studies on Part-VAE training in the ShapeNet experiment. The results show that primitive regularization is needed
to achieve a fine balance between geometric simplicity and shape faithfulness of each part in both the pre-training and fine-tuning stages.

Pre-training Fine-tuning Primitive Regularization Voxel IoU

X 40.9
X X 50.1

X X 51.3
X X X 52.9

Table 3: Ablation studies on the latent dimension (d) of Part-VAE. We report the voxel IoU results on ShapeNet. The regularization
might not be sufficient with a large d, while a small d would result in worse reconstructions due to insufficient capacity. The results show
that our model with d = 64 achieves a better trade-off between the degree of deformation and shape regularization.

Latent dimension Airplane Car Chair All 13 classes

d = 256 57.0 72.8 44.8 52.0
d = 128 57.3 73.6 45.3 52.8
d = 64 57.3 75.2 45.5 52.9
d = 32 56.8 74.0 42.8 52.5
d = 16 55.8 72.5 41.5 51.8

3.3. Multi-view training

We propose the part-based method aiming to deal with a weakly-supervised setting (1-view training). However, our
method can be easily extended to multi-view training by rendering the reconstructed mesh from different viewpoints and
calculating the silhouette loss as a stronger supervision. As a reference, we show the quantitative results of multi-view
training in Table 4.

3.4. Latent Part Analysis

To analyze the distribution of discovered object latent part encodings, we visualize them using t-SNE [7] plots. We
show the t-SNE plots of latent part encodings and reconstructed mesh vertices in Figure 5 and Figure 6, respectively. As
demonstrated in the figures, the discovered object parts are clearly separated in both the latent space and the 3D output space.



Table 4: Ablations studies on multi-view training in the ShapeNet experiment. We report the whole-object voxel IoU using 1 view,
2 views, or 20 views per object for training. Our part-based method achieves higher reconstruction accuracy compared to the existing
methods, especially in a weakly-supervised setting (1 view or 2 views).

Method 1 view 2 views 20 views

SoftRas [6] 46.9 55.5 64.6
VPL [4] 51.3 58.3 65.5
LPD (ours) 52.9 60.1 66.3

Figure 5: t-SNE plot of the latent encoding of airplane parts. Figure 6: t-SNE plot of the mesh vertices of airplane parts.

3.5. Failure Cases

In Figure 7, we show some failure cases produced by our model. For object shapes that are compact and primitive-like
by itself, our model tends to produce highly-overlapping parts. On the other hand, if an object is composed of multiple
parts connected by a thin structure, our model is likely to ignore the thin connection and result in separated parts. We
have experimented with various part separation and connection constraints to deal with such cases. However, we find that
automatic part discovery is more general and achieves the highest reconstruction accuracy on average.

Input 3 Parts Part 1 Part 2 Part 3

Figure 7: Failure cases. Our model is likely to produce highly-overlapping parts when the object is compact and primitive-like as a whole.
If the object has a thin structure that is barely captured by the object silhouette, our model may produce disconnected parts.



4. Additional Results
We present more qualitative results on the ShapeNet [2] dataset. In Figure 8 and 10, we show the qualitative comparisons

of our approach and the baseline methods. The results show that LPD (ours) discovers more meaningful and semantically
consistent parts compared to using primitive part shapes or without any part prior. We also show some example 6-part
reconstructions in Figure 9 and 11. More 3-part reconstruction results of diverse ShapeNet classes are shown in Figure 12
and Figure 13. The qualitative results demonstrate that the discovered parts are meaningful, consistent across object instances,
and general across object classes.

Input Free-form Free-form Cuboids Ellipsoids LPD LPD
(k = 1) (k = 3) (k = 3) (k = 3) (k = 3) (k = 6)

Figure 8: Qualitative comparisons on the ShapeNet airplane examples. We show sample results by different methods, including 3 part
reconstruction with free-form meshes, cuboids, or ellipsoids, and LPD (ours) with 3 and 6 parts. Our discovered parts are consistent across
diverse object instances and capture the detail structures faithfully.

Input View 1 View 2 Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Figure 9: Qualitative results of 6-part reconstruction. We show the 6-part airplane reconstructions rendered from two different view-
points. The results show that the discovered object parts are meaningful and consistent across instances.



Input Free-form Free-form Cuboids Ellipsoids LPD LPD
(k = 1) (k = 3) (k = 3) (k = 3) (k = 3) (k = 6)

Figure 10: Qualitative comparisons on the ShapeNet chair examples. We show sample results by different methods, including 3 part
reconstruction with no part prior, cuboids, or ellipsoids, and LPD (ours) with 3 and 6 parts. Our discovered parts are consistent across
diverse object instances and capture the detail structures faithfully.

Input View 1 View 2 Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Figure 11: Qualitative results of 6-part reconstruction. We show the 6-part airplane reconstructions rendered from two different view-
points. The results show that the discovered object parts are meaningful and consistent across instances.



Input View 1 View 2 Part 1 Part 2 Part 3

Figure 12: Qualitative results on the ShapeNet dataset. Our models adopt the proposed Part-VAE and adversarial learning. We show the
reconstruction results of airplanes, rifles, watercrafts, cars, and displays (from top to bottom). Each sample is rendered from two different
viewpoints. The results show that the discovered object parts are meaningful and consistent across instances.



Input View 1 View 2 Part 1 Part 2 Part 3

Figure 13: Qualitative results on the ShapeNet dataset. Our models adopt the proposed Part-VAE and adversarial learning. We show the
reconstruction results of airplanes, rifles, watercrafts, cars, and displays (from top to bottom). Each sample is rendered from two different
viewpoints. The results show that the discovered object parts are meaningful and consistent across instances.



4.1. Additional Results on Pascal 3D+

We show more qualitative results on the Pascal 3D+ dataset [10] in Figure 14. Note that this dataset also contains the
images from ImageNet [9] and the silhouette and viewpoint annotations estimated by a self-supervised method [5]. Despite
the noisy ground-truth annotations and complicated object shapes in real-world scenes, our method still discovers meaningful
and semantically consistent parts.

Input VPL [4] LPD (discovered parts) LPD (color reconstruction)

Figure 14: 3-part reconstruction results on the Pascal 3D+ dataset. Note that the dataset size is significantly smaller than ShapeNet
and ground-truth silhouette and viewpoint annotations are noisy. However, our model can still discover meaningful object parts on the
challenging real-world images and capture more faithful details compared to the single-mesh models.
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